MiR-130a-3p Has Protective Effects in Alzheimer’s Disease via Targeting DAPK1

American Journal of Alzheimer’s Disease &Other Dementiasr, Volume 36, Issue , January-December 2021.
The present study investigated the role and potential mechanisms of miR-130a-3p in AD. SH-SY5Y cells were treated with Aβ 1-42 to construct AD cell models. APP/PS1 mice were used for the animal experiments.  MiR-130a-3p was downregulated in Aβ-induced SH-SY5Y cells. Overexpression of miR-130a-3p attenuates Aβ induced SH-SY5Y cell apoptosis. Low miR-130a-3p expression was detected in the hippocampus tissues of AD mice. The Morris water maze (MWM) results indicated that miR-130a-3p upregulation reduced the escape latency time and increased the time of AD mice spent in the target quadrant. DAPK1 was the target gene of miR-130a-3p. High DAPK1 mRNA level was detected in Aβ treated PC 12 cells and in the hippocampus tissues of AD mice. It was concluded that overexpression of miR-130a-3p may attenuate Aβ-induced neurotoxicity and improve the cognitive function of AD mice via targeting DAPK1.MiR-130a-3p Has Protective Effects in Alzheimer’s Disease via Targeting DAPK1MiR-130a-3p Has Protective Effects in Alzheimer’s Disease via Targeting DAPK1Alzheimers{$excerpt:n}